

Lessons Learned from India's Bio-Compressed Natural Gas (Bio-CNG) Projects

> Dr. Nimmi Damodaran, Independent Consultant

On behalf of the Global Methane Initiative and the U.S. Environmental **Protection Agency**

Overview of Presentation

- Global Methane Initiative
- Overview of biogas and bio-CNG
- Insights from 11 Bio-CNG plants
- Successes, Challenges and Recommendations

Global Methane Initiative (GMI)

- International public-private partnership focused on advancing:
 - Cost-effective, near-term methane abatement
 - Recovery and use of methane as a valuable energy source
- Provides in-kind technical support to deploy methane mitigation and methane-to-energy projects around the world
- Supports methane mitigation in three key sectors:
 - Biogas (municipal solid waste, agriculture, wastewater)
 - Coal mines
 - Oil & gas

- 49 Partner Countries
- 100s of Project Network members
- Alliances with international organizations focused on methane recovery and use

GMI Partner Countries represent approximately 75% of methane emissions from human activities.

The biogas sector makes up 19% of total human-caused methane emissions

Source: U.S. Environmental Protection Agency Global Non-CO₂ Greenhouse Gas Emission Projections & Mitigation Potential: 2015-2050

Benefits of Recovering and Using Methane

- Decreased greenhouse gases
- Better air and water quality
- Improved human health
- Enhanced energy security
- Increased worker safety
- Expanded economic growth

What is Bio-CNG?

- Bio-CNG is the purified form of biogas produced from organic waste such as agricultural residues, animal manure, municipal solid waste and industrial biodegradable waste.
- It is an alternative to conventional compressed natural gas (CNG) for transportation fuel, power generation, and industrial applications such as heating and cooling.

Source: Global Green Growth Institute

Domestic and international commitments have increased demand for biogas technologies

India to develop 5000 large scale bio-CNG plants

Brazil to expand number of biogas facilities

Enabling Environment for Bio-CNG in India

- The Government of India is investing heavily in bio-CNG to
 - Increase domestic energy production
 - Improve rural employment and farmer income
 - Improve waste management
 - Reduce harmful air emissions
- India's national goal is to develop 5,000 large-scale bio-CNG plants
- National policies include:
 - Swachh Bharat Mission, National Policy on Biofuels, Sustainable Alternative Towards Affordable Transportation (SATAT) initiative and many more

U.S. EPA Study

Purpose: Assess the performance of Bio-CNG plants across northern India to identify best practices, challenges, and areas of improvement to support the growth of Bio-CNG sector in India and globally.

Study results will be published soon!

Overview of Study

- 11 Bio-CNG project sites across five states of northern India
- Qualitative and quantitative data was collected to evaluate factors contributing to success or failures of the plants.
- Diverse feedstocks analyzed: press mud, cow dung, poultry litter, sewage sludge and paddy straw.
- Technology types:
 - Pressure Swing Adsorption (PSA)
 - Vacuum Pressure Swing Adsorption (VPSA)
 - Membrane Pressure Swing Adsorption (MPSA)
 - Water Scrubbing

Understanding Bio-CNG Processes

Bio-CNG Production Process

Feedstock Collection

Pretreatment Anaerobic Digestion

Biogas Purification Compression & Storage

Distribution & Utilization

Understanding Bio-CNG Processes

Bio-CNG Production Process

Feedstock Collection

Pretreatment Anaerobic Digestion

Biogas Purification Compression & Storage

Distribution & Utilization

Summary of Biogas Purification Technologies

(based on feedback and experiences from the plants)

Purification technology	Operational Performance	Advantages	Disadvantages
Pressure Swing Adsorption (PSA)	80-99% efficiency0.5-20% methane loss	Capable of high efficiencyWidely availableEasy to useLower initial cost	 Variable performance Inconsistent gas production High maintenance costs Higher energy consumption
Vacuum Pressure Swing Adsorption (VPSA)	96-98% efficiency<2% methane loss	High efficiencyLower energy consumption	High maintenance costs
Membrane Pressure Swing Adsorption (MPSA)	96% efficiency3% methane loss	High efficiencyLower energy consumption	 High maintenance costs Not widely available; extended equipment delays impacted operation
Water Scrubbing	98% efficiency<1% methane loss	High efficiencyLeast technically complexLow maintenance costs	 Requires significant water consumption

Observed Successes and Challenges

□ Feedstock supply and quality

- Long term contracts with diverse suppliers
- Implementing storage solutions
- Inconsistent supply, Price volatility
- Inadequate storage

□Purification equipment

- Technologies like PSA and VPSA achieved 99% efficiency in biogas production
- Adherence to standards IS16087 ensured quality
- Appropriate technology, Monitoring systems
- High maintenance cost

□ Equipment operations and commissioning

- Plants adhering to maintenance protocols minimal downtime and higher operational efficiency
- · Quality standards for equipment
- Standard operating procedures

Observed Successes and Challenges

□Staffing and training

Success factors

Challenges

- Staff training and knowledge sharing culture enhanced operational efficiency
- Capacity building
- incentivizing retention of skilled labor

☐ End product sales

- Few plants diversified revenue streams through digestate and Bio-CNG sales
- Market research
- Product development appropriate to the region

☐Permitting and financing

- Plants that could navigate the permitting process demonstrated resilience and success in project execution.
- Partnerships and government support helped few project to overcome financial challenges
- Permitting
- Educating financial institutions on Bio-CNG & national initiatives

Recommendations for Enhancing Success of Bio-CNG Projects

Standardization of Feedstock Agreements

Investment in Storage Infrastructure – feedstock and Bio-CNG

Monitoring and Technical Support Market Research and Product Diversification

Capacity Building of Operational Staff Streamlined Permitting and Financial Instruments

Incentivizing Investment and Collaboration

GMI Tools and Resources to Support Methane Reductions from the Waste Sector

Tools

- Solid Waste Emissions Estimation Tool (SWEET)
- SWEET SOLID WASTE EMISSIONS ESTIMATION TOOL

- Anaerobic Digestion Screening Tool
- Organics Economics (OrganEcs)
- Landfill Gas Screening Tool

Resources

- Waste Characterization Handbook
- Policymaker's Framework for Addressing Methane Emissions
- Policy Maker's Handbook for Measurement, Reporting, and Verification (MRV) in the Biogas Sector
- Risk Analysis Checklist for Biogas Projects

globalmethane.org

Thank You!

Dr. Nimmi Damodaran, Independent Consultant

On behalf of the Global Methane Initiative and the U.S. Environmental Protection Agency

Thank You!

Study results and recommendations will be published on globalmethane.org soon!

Questions?

secretariat@globalmethane.org